Search Results for: An Introduction To Diophantine Equations
An Introduction to Diophantine Equations
Author: Titu Andreescu
Publisher: Birkhäuser
ISBN: 0817645489
Category: Mathematics
Page: 345
View: 933
Download NowLanguage: en
Pages: 345
Pages: 345
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and
Language: en
Pages: 345
Pages: 345
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and
Language: en
Pages: 400
Pages: 400
This book provides a concise and modern introduction to Formal Languages and Machine Computation, a group of disparate topics in the theory of computation, which includes formal languages, automata theory, turing machines, computability, complexity, number-theoretic computation, public-key cryptography, and some new models of computation, such as quantum and biological computation.
Language: en
Pages: 637
Pages: 637
Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where
Language: en
Pages: 350
Pages: 350
The purpose of this book is to introduce the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. Over 250 problems include questions to interest and challenge the most able student but