Search Results for: Introduction To Riemannian Manifolds
Language: en
Pages: 437
Pages: 437
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard
Language: en
Pages: 226
Pages: 226
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard
Language: en
Pages: 429
Pages: 429
An Introduction to Differentiable Manifolds and Riemannian Geometry
Language: en
Pages: 419
Pages: 419
The second edition of An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised has sold over 6,000 copies since publication in 1986 and this revision will make it even more useful. This is the only book available that is approachable by "beginners" in this subject. It has become an essential
Language: en
Pages: 269
Pages: 269
This book aims to bridge the gap between probability and differential geometry. It gives two constructions of Brownian motion on a Riemannian manifold: an extrinsic one where the manifold is realized as an embedded submanifold of Euclidean space and an intrinsic one based on the ``rolling'' map. It is then